28 research outputs found

    A power-controlled MAC supporting service differentiation in mobile ad hoc networks

    Get PDF
    The original power controlled multiple access (PCMA) protocol does not support service differentiation. In this paper, we extend PCMA to form a new media access control protocol supporting service differentiation in mobile ad hoc networks. To support QoS, we first introduce the in-station access category concept in 802.1 le to PCMA. For service differentiation between access categories, our major contribution is to propose a sender-initiated busy tone based mechanism that allows a user to gain quick channel access. This quick access mechanism is only performed when the number of access failures exceeds a threshold. An access category with higher priority is assigned a lower threshold for easier channel access, and vice versa. Through analysis and simulation, we demonstrate that our protocol can provide better quality of service than 802.11e in terms of throughput, delay, loss, and fairness. © 2005 IEEE.published_or_final_versio

    Data from: Extant primitively segmented spiders have recently diversified from an ancient lineage

    No full text
    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39–58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4–24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies

    Data from: Extant primitively segmented spiders have recently diversified from an ancient lineage

    No full text
    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39–58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4–24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies
    corecore